Package: sdwd 1.0.6
sdwd: Sparse Distance Weighted Discrimination
Formulates a sparse distance weighted discrimination (SDWD) for high-dimensional classification and implements a very fast algorithm for computing its solution path with the L1, the elastic-net, and the adaptive elastic-net penalties. More details about the methodology SDWD is seen on Wang and Zou (2016) (<doi:10.1080/10618600.2015.1049700>).
Authors:
sdwd_1.0.6.tar.gz
sdwd_1.0.6.zip(r-4.5)sdwd_1.0.6.zip(r-4.4)sdwd_1.0.6.zip(r-4.3)
sdwd_1.0.6.tgz(r-4.4-x86_64)sdwd_1.0.6.tgz(r-4.4-arm64)sdwd_1.0.6.tgz(r-4.3-x86_64)sdwd_1.0.6.tgz(r-4.3-arm64)
sdwd_1.0.6.tar.gz(r-4.5-noble)sdwd_1.0.6.tar.gz(r-4.4-noble)
sdwd_1.0.6.tgz(r-4.4-emscripten)sdwd_1.0.6.tgz(r-4.3-emscripten)
sdwd.pdf |sdwd.html✨
sdwd/json (API)
# Install 'sdwd' in R: |
install.packages('sdwd', repos = c('https://boxiang-wang.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/boxiang-wang/sdwd/issues
- colon - Simplified gene expression data from Alon et al.
Last updated 3 years agofrom:53732f03da. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 13 2024 |
R-4.5-win-x86_64 | OK | Nov 13 2024 |
R-4.5-linux-x86_64 | OK | Nov 13 2024 |
R-4.4-win-x86_64 | OK | Nov 13 2024 |
R-4.4-mac-x86_64 | OK | Nov 13 2024 |
R-4.4-mac-aarch64 | OK | Nov 13 2024 |
R-4.3-win-x86_64 | OK | Nov 13 2024 |
R-4.3-mac-x86_64 | OK | Nov 13 2024 |
R-4.3-mac-aarch64 | OK | Nov 13 2024 |
Exports:coef.cv.sdwdcoef.sdwdcv.sdwdcvcomputeerrerror.barsgetmingetoutputlambda.interplamfixnonzeroplot.cv.sdwdplot.sdwdpredict.cv.sdwdpredict.sdwdprint.sdwdsdwdzeromat
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Sparse Distance Weighted Discrimination | sdwd-package |
compute coefficients from a "cv.sdwd" object | coef.cv.sdwd |
compute coefficients for the sparse DWD | coef.sdwd |
simplified gene expression data from Alon et al. (1999) | colon |
cross-validation for the sparse DWD | cv.sdwd |
plot the cross-validation curve of the sparse DWD | plot.cv.sdwd |
plot coefficients for the sparse DWD | plot.sdwd |
make predictions from a "cv.sdwd" object | predict.cv.sdwd |
make predictions for the sparse DWD | predict.sdwd |
print an sdwd object | print.sdwd |
fit the sparse DWD | sdwd |